Feine, J., Morana, S., and Maedche, A. (2019). “Leveraging Machine-Executable Descriptive Knowledge in Design Science Research ‐ The Case of Designing Socially-Adaptive Chatbots”. In: Extending the Boundaries of Design Science Theory and Practice. Ed. by B. Tulu, S. Djamasbi, G. Leroy. Cham: Springer International Publishing, pp. 76–91. Download Publication
Think about the possibilities: all developers regardless of expertise in data science able to build conversational AI that can enrich and expand the reach of applications to audiences across a myriad of conversational channels. The app will be able to understand natural language, reason about content and take intelligent actions. Bringing intelligent agents to developers and organizations that do not have expertise in data science is disruptive to the way humans interact with computers in their daily life and the way enterprises run their businesses with their customers and employees.
The trained neural network is less code than an comparable algorithm but it requires a potentially large matrix of “weights”. In a relatively small sample, where the training sentences have 150 unique words and 30 classes this would be a matrix of 150x30. Imagine multiplying a matrix of this size 100,000 times to establish a sufficiently low error rate. This is where processing speed comes in.
Of course, each messaging app has its own fine print for bots. For example, on Messenger a brand can send a message only if the user prompted the conversation, and if the user doesn't find value and opt to receive future notifications within those first 24 hours, there's no future communication. But to be honest, that's not enough to eradicate the threat of bad bots.
As VP of Coveo’s Platform line of business, Gauthier Robe oversees the company’s Intelligent Search Platform and roadmap, including Coveo Cloud, announced in June 2015. Gauthier is passionate about using technology to improve customers’ and people’s lives. He has over a decade of international experience in the high-tech industry and deep knowledge of Cloud Computing, electronics, IoT, and product management. Prior to Coveo, Gauthier worked for Amazon Web Services and held various positions in high-tech consulting firms, helping customers envision the future and achieve its potential. Gauthier resides in the Boston area and has an engineering degree from UCL & MIT. In his spare time, Gauthier enjoys tinkering with new technologies and connected devices.
In our work at ZipfWorks building and scaling intelligent shopping platforms and applications, we pay close attention to emerging trends impacting digital commerce such as chatbots and mobile commerce. As this nascent trend towards a more conversational commerce ecosystem unfolds at a dizzying pace, we felt it would be useful to take a step back and look at the major initiatives and forces shaping this trend and compiled them here in this report. We’ve applied some of these concepts in our current project Dealspotr, to help more shoppers save more money through intelligent use of technology and social product design.

The most advanced bots are powered by artificial intelligence, helping it to understand complex requests, personalize responses, and improve interactions over time. This technology is still in its infancy, so most bots follow a set of rules programmed by a human via a bot-building platform. It's as simple as ordering a list of if-then statements and writing canned responses, often without needing to know a line of code.
Since Facebook Messenger, WhatsApp, Kik, Slack, and a growing number of bot-creation platforms came online, developers have been churning out chatbots across industries, with Facebook’s most recent bot count at over 33,000. At a CRM technologies conference in 2011, Gartner predicted that 85 percent of customer engagement would be fielded without human intervention. Though a seeming natural fit for retail and purchasing-related decisions, it doesn’t appear that chatbot technology will play favorites in the coming few years, with uses cases being promoted in finance, human resources, and even legal services.
We’ve just released a major new report, The CIO’s Guide To Automation, AI, And Robotics. We find that, to stay ahead, CIOs, CTOs, CDOs, and other executives integrating leading-edge technologies into their companies’ operations and business models must turn their attention to automation technologies, including intelligent machines, robotic process automation (RPA) bots, artificial intelligence, and physical […]
2a : a computer program that performs automatic repetitive tasks : agent sense 5 Several shopping "bots" will track down prices for on-line merchandise from a variety of vendors.— Sam Vincent Meddis especially : one designed to perform a malicious action These bot programs churn away all day and night, prodding at millions of random IP addresses looking for holes to crawl through. — Jennifer Tanaka
Chatbots succeed when a clear understanding of user intent drives development of both the chatbot logic and the end-user interaction. As part of your scoping process, define the intentions of potential users. What goals will they express in their input? For example, will users want to buy an airline ticket, figure out whether a medical procedure is covered by their insurance plan or determine whether they need to bring their computer in for repair? 

Human touch. Chatbots, providing an interface similar to human-to-human interaction, are more intuitive and so less difficult to use than a standard banking mobile application. They doesn't require any additional software installation and are more adaptive as able to be personalized during the exploitation by the means of machine learning. Chatbots are instant and so much faster that phone calls, shown to be considered as tedious in some studies. Then they satisfy both speed and personalization requirement while interacting with a bank.
1. AI-based: these ones really rely on training and are fairly complicated to set up. You train the chatbot to understand specific topics and tell your users which topics your chatbot can engage with. AI chatbots require all sorts of fall back and intent training. For example, let’s say you built a doctor chatbot (off the top of my head because I am working on one at the moment), it would have to understand that “i have a headache” and “got a headache” and “my head hurts” are the same intent. The user is free to engage and the chatbot has to pick things up.
Specialized conversational bots can be used to make professional tasks easier. For example, a conversational bot could be used to retrieve information faster compared to a manual lookup; simply ask, “What was the patient’s blood pressure in her May visit?” The conversational bot will answer instantly instead of the user perusing through manual or electronic records.
Through Knowledge Graph, Google search has already become amazingly good at understanding the context and meaning of your queries, and it is getting better at natural language queries. With its massive scale in data and years of working at the very hard problems of natural language processing, the company has a clear path to making Allo’s conversational commerce capabilities second to none.
How can our business leverage technology to better and more often engage younger audiences with our products and services? H&M is one of several retailers experimenting with and leveraging chatbots as a  mobile marketing opportunity – according to a report by Accenture, 32 percent of the world (a large portion of the population 29 years old and younger) uses social media daily and 80 percent of that time is via mobile.

Facebook has jumped fully on the conversational commerce bandwagon and is betting big that it can turn its popular Messenger app into a business messaging powerhouse. The company first integrated peer-to-peer payments into Messenger in 2015, and then launched a full chatbot API so businesses can create interactions for customers to occur within the Facebook Messenger app. You can order flowers from 1–800-Flowers, browse the latest fashion and make purchases from Spring, and order an Uber, all from within a Messenger chat.


The sentiment analysis in machine learning uses language analytics to determine the attitude or emotional state of whom they are speaking to in any given situation. This has proven to be difficult for even the most advanced chatbot due to an inability to detect certain questions and comments from context. Developers are creating these bots to automate a wider range of processes in an increasingly human-like way and to continue to develop and learn over time.
Chatting with a bot should be like talking to a human that knows everything. If you're using a bot to change an airline reservation, the bot should know if you have an unused credit on your account and whether you typically pick the aisle or window seat. Artificial intelligence will continue to radically shape this front, but a bot should connect with your current systems so a shared contact record can drive personalization.
At a high level, a conversational bot can be divided into the bot functionality (the "brain") and a set of surrounding requirements (the "body"). The brain includes the domain-aware components, including the bot logic and ML capabilities. Other components are domain agnostic and address non-functional requirements such as CI/CD, quality assurance, and security.
Regardless of which type of classifier is used, the end-result is a response. Like a music box, there can be additional “movements” associated with the machinery. A response can make use of external information (like weather, a sports score, a web lookup, etc.) but this isn’t specific to chatbots, it’s just additional code. A response may reference specific “parts of speech” in the sentence, for example: a proper noun. Also the response (for an intent) can use conditional logic to provide different responses depending on the “state” of the conversation, this can be a random selection (to insert some ‘natural’ feeling).
This is the big one. We worked with one particular large publisher (can’t name names unfortunately, but hundreds of thousands of users) in two phases. We initially released a test phase that was sort of a “catch all”. Anyone could message a broad keyword to their bot and start a campaign. Although we had a huge number of users come in, engagement was relatively average (87% open rate and 27.05% click-through rate average over the course of the test). Drop off here was fairly high, about 3.14% of users had unsubscribed by the end of the test.

2. Flow-based: these work on user interaction with buttons and text. If you have used Matthew’s chatbot, that is a flow-based chatbot. The chatbot asks a question then offers options in the form of buttons (Matthew’s has a yes/no option). These are more limited, but you get the possibility of really driving down the conversation and making sure your users don’t stray off the path.
In 1950, Alan Turing's famous article "Computing Machinery and Intelligence" was published, which proposed what is now called the Turing test as a criterion of intelligence. This criterion depends on the ability of a computer program to impersonate a human in a real-time written conversation with a human judge, sufficiently well that the judge is unable to distinguish reliably—on the basis of the conversational content alone—between the program and a real human. The notoriety of Turing's proposed test stimulated great interest in Joseph Weizenbaum's program ELIZA, published in 1966, which seemed to be able to fool users into believing that they were conversing with a real human. However Weizenbaum himself did not claim that ELIZA was genuinely intelligent, and the Introduction to his paper presented it more as a debunking exercise:
As I tinker with dialog systems at the Allen Institute for Artificial Intelligence, primarily by prototyping Alexa skills, I often wonder what AI is still lacking to build good conversational systems, punting the social challenge to another day. This post is my take on where AI has a good chance to improve and consequently, what we can expect from the next wave of conversational systems.
In our research, we collaborate with a strong network of national and international partners from academia and industry. We aim to bring together different people with different skill sets and expertise to engage in innovative research projects and to strengthen the exchange between research and practice. Our partnerships can take various forms, including project-based collaboration, research scholarships, and publicly funded projects.
Another benefit is that your chatbot can store information on the types of questions it’s being asked. Not only does this make the chatbot better equipped to answer future questions and upsell additional products, it gives you a better understanding of what your customers need to know to close the deal. With this information, you’ll be better equipped to market more effectively to your customers in the future.
In 2000 a chatbot built using this approach was in the news for passing the “Turing test”, built by John Denning and colleagues. It was built to emulate the replies of a 13 year old boy from Ukraine (broken English and all). I met with John in 2015 and he made no false pretenses about the internal workings of this automaton. It may have been “brute force” but it proved a point: parts of a conversation can be made to appear “natural” using a sufficiently large definition of patterns. It proved Alan Turing’s assertion, that this question of a machine fooling humans was “meaningless”.
When you have a desperate need for a java fix with minimal human interaction and effort, this bot has you covered. According to a demo led by Gerri Martin-Flickinger, the coffee chain's chief technology officer, the bot even understands complex orders with special requests, like "double upside down macchiato half decaf with room and a splash of cream in a grande cup."
We use cookies and other tracking technologies to improve your browsing experience on our site, show personalized content and targeted ads, analyze site traffic, and understand where our audience is coming from. To find out more or to opt-out, please read our Cookie Policy. In addition, please read our Privacy Policy, which has also been updated and became effective May 23rd, 2018.
One pertinent field of AI research is natural language processing. Usually, weak AI fields employ specialized software or programming languages created specifically for the narrow function required. For example, A.L.I.C.E. uses a markup language called AIML, which is specific to its function as a conversational agent, and has since been adopted by various other developers of, so called, Alicebots. Nevertheless, A.L.I.C.E. is still purely based on pattern matching techniques without any reasoning capabilities, the same technique ELIZA was using back in 1966. This is not strong AI, which would require sapience and logical reasoning abilities.
×