Once you’ve determined these factors, you can develop the front-end web app or microservice. You might decide to integrate a chatbot into a customer support website where a customer clicks on an icon that immediately triggers a chatbot conversation. You could also integrate a chatbot into another communication channel, whether it’s Slack or Facebook Messenger. Building a “Slackbot,” for example, gives your users another way to get help or find information within a familiar interface.
However, as irresistible as this story was to news outlets, Facebook’s engineers didn’t pull the plug on the experiment out of fear the bots were somehow secretly colluding to usurp their meatbag overlords and usher in a new age of machine dominance. They ended the experiment due to the fact that, once the bots had deviated far enough from acceptable English language parameters, the data gleaned by the conversational aspects of the test was of limited value.
In a traditional application, the user interface (UI) is a series of screens. A single app or website can use one or more screens as needed to exchange information with the user. Most applications start with a main screen where users initially land and provide navigation that leads to other screens for various functions like starting a new order, browsing products, or looking for help.
This kind of thinking has lead me to develop a bot where the focus is as a medium for content rather than a subsitute for intelligence. So users create content much as conventional author, (but with text stored in spreadsheets rather than anywhere else). Very little is expected from the bot in terms of human behavious such as “learning”, “empathy”, “memory” and character”. Does it work?

Ultimately, only time will tell how effective the likes of Facebook Messenger will become in the long term. As more and more companies look to use chatbots within the platform, the greater the frequency of messages that individual users will receive. This could result in Facebook (and other messaging platforms) placing stricter restrictions on usage, but until then I'd recommend testing as much as possible.
Feine, J., Morana, S., and Maedche, A. (2019). “Leveraging Machine-Executable Descriptive Knowledge in Design Science Research ‐ The Case of Designing Socially-Adaptive Chatbots”. In: Extending the Boundaries of Design Science Theory and Practice. Ed. by B. Tulu, S. Djamasbi, G. Leroy. Cham: Springer International Publishing, pp. 76–91. Download Publication
As ChatbotLifeexplained, developing bots is not the same as building apps. While apps specialise in a number of functions, chatbots have a bigger capacity for inputs. The trick here is to start with a simple objective and focus on doing it really well (i.e., having a minimum viable product or ‘MVP’). From that point onward, businesses can upgrade their bots.
Once the chatbot is ready and is live interacting with customers, smart feedback loops can be implemented. During the conversation when customers ask a question, chatbot smartly give them a couple of answers by providing different options like “Did you mean a,b or c”. That way customers themselves matches the questions with actual possible intents and that information can be used to retrain the machine learning model, hence improving the chatbot’s accuracy.
In 2000 a chatbot built using this approach was in the news for passing the “Turing test”, built by John Denning and colleagues. It was built to emulate the replies of a 13 year old boy from Ukraine (broken English and all). I met with John in 2015 and he made no false pretenses about the internal workings of this automaton. It may have been “brute force” but it proved a point: parts of a conversation can be made to appear “natural” using a sufficiently large definition of patterns. It proved Alan Turing’s assertion, that this question of a machine fooling humans was “meaningless”.
Respect the conversational UI. The full interaction should take place natively within the app. The goal is to recognize the user's intent and provide the right content with minimum user input. Every question asked should bring the user closer to the answer they want. If you need so much information that you're playing a game of 20 Questions, then switch to a form and deliver the content another way.

Interface designers have come to appreciate that humans' readiness to interpret computer output as genuinely conversational—even when it is actually based on rather simple pattern-matching—can be exploited for useful purposes. Most people prefer to engage with programs that are human-like, and this gives chatbot-style techniques a potentially useful role in interactive systems that need to elicit information from users, as long as that information is relatively straightforward and falls into predictable categories. Thus, for example, online help systems can usefully employ chatbot techniques to identify the area of help that users require, potentially providing a "friendlier" interface than a more formal search or menu system. This sort of usage holds the prospect of moving chatbot technology from Weizenbaum's "shelf ... reserved for curios" to that marked "genuinely useful computational methods".
×