Using chatbot builder platforms. You can create a chatbot with the help of services providing all the necessary features and integrations. It can be a good choice for an in-house chatbot serving your team. This option is associated with some disadvantages, including the limited configuration and the dependence on the service. Some popular platforms for building chatbots are:
For every question or instruction input to the conversational bot, there must exist a specific pattern in the database to provide a suitable response. Where there are several combinations of patterns available, and a hierarchical pattern is created. In these cases, algorithms are used to reduce the classifiers and generate a structure that is more manageable. This is the “reductionist” approach—or, in other words, to have a simplified solution, it reduces the problem.

Artificial neural networks, invented in the 1940’s, are a way of calculating an output from an input (a classification) using weighted connections (“synapses”) that are calculated from repeated iterations through training data. Each pass through the training data alters the weights such that the neural network produces the output with greater “accuracy” (lower error rate).

Interface designers have come to appreciate that humans' readiness to interpret computer output as genuinely conversational—even when it is actually based on rather simple pattern-matching—can be exploited for useful purposes. Most people prefer to engage with programs that are human-like, and this gives chatbot-style techniques a potentially useful role in interactive systems that need to elicit information from users, as long as that information is relatively straightforward and falls into predictable categories. Thus, for example, online help systems can usefully employ chatbot techniques to identify the area of help that users require, potentially providing a "friendlier" interface than a more formal search or menu system. This sort of usage holds the prospect of moving chatbot technology from Weizenbaum's "shelf ... reserved for curios" to that marked "genuinely useful computational methods".

It’s not all doom and gloom for chatbots. Chatbots are a stopgap until virtual assistants are able to tackle all of our questions and concerns, regardless of the site or platform. Virtual assistants will eventually connect to everything in your digital life, from websites to IoT-enabled devices. Rather than going through different websites and speaking to various different chatbots, the virtual assistant will be the platform for finding the answers you need. If these assistants are doing such a good job, why would you even bother to use a branded chatbot? Realistically this won’t take place for sometime, due to the fragmentation of the marketplace.

Smooch acts as more of a chatbot connector that bridges your business apps, (ex: Slack and ZenDesk) with your everyday messenger apps (ex: Facebook Messenger, WeChat, etc.) It links these two together by sending all of your Messenger chat notifications straight to your business apps, which streamlines your conversations into just one application. In the end, this can result in smoother automated workflows and communications across teams. These same connectors also allow you to create chatbots which will respond to your customer chats…. boom!

What if you’re creating a bot for a major online clothing retailer? For starters, the bot will require a greeting (“How can I help you?”) as well as a process for saying its goodbyes. In between, the bot needs to respond to inputs, which could range from shopping inquiries to questions about shipping rates or return policies, and the bot must possess a script for fielding questions it doesn’t understand.
As in the prior method, each class is given with some number of example sentences. Once again each sentence is broken down by word (stemmed) and each word becomes an input for the neural network. The synaptic weights are then calculated by iterating through the training data thousands of times, each time adjusting the weights slightly to greater accuracy. By recalculating back across multiple layers (“back-propagation”) the weights of all synapses are calibrated while the results are compared to the training data output. These weights are like a ‘strength’ measure, in a neuron the synaptic weight is what causes something to be more memorable than not. You remember a thing more because you’ve seen it more times: each time the ‘weight’ increases slightly.

However, the revelations didn’t stop there. The researchers also learned that the bots had become remarkably sophisticated negotiators in a short period of time, with one bot even attempting to mislead a researcher by demonstrating interest in a particular item so it could gain crucial negotiating leverage at a later stage by willingly “sacrificing” the item in which it had feigned interest, indicating a remarkable level of premeditation and strategic “thinking.”
As discussed earlier here also, each sentence is broken down into different words and each word then is used as input for the neural networks. The weighted connections are then calculated by different iterations through the training data thousands of times. Each time improving the weights to making it accurate. The trained data of neural network is a comparable algorithm more and less code. When there is a comparably small sample, where the training sentences have 200 different words and 20 classes, then that would be a matrix of 200×20. But this matrix size increases by n times more gradually and can cause a huge number of errors. In this kind of situations, processing speed should be considerably high.
aLVin is built on the foundation of Nuance’s Nina, the intelligent multichannel virtual assistant that leverages natural language understanding (NLU) and cognitive computing capabilities. aLVin interacts with brokers to better understand “intent” and deliver the right information 24/7; the chatbot was built with extensive knowledge of LV=Broker’s products, which accelerated the process of being able to answer more questions and direct brokers to the right products early on
I argued that it is super hard to scale a one-trick TODA into a general assistant that helps the user getting things done across multiple tasks. An intelligence assistant is arguably expected to hold an informal chit-chat with the user. It is this area where we are staring into perhaps the biggest challenge of AI. Observe how Samantha introduces herself to Joaquin Phoenix’s Ted in the clip below:
Chatbots have come a long way since then. They are built on AI technologies, including deep learning, natural language processing and  machine learning algorithms, and require massive amounts of data. The more an end user interacts with the bot, the better voice recognition becomes at predicting what the appropriate response is when communicating with an end user.
Simple chatbots, or bots, are easy to build. In fact, many coders have automated bot-building processes and templates. The majority of these processes follow simple code formulas that the designer plans, and the bots provide the responses coded into it—and only those responses. Simplistic bots (built in five minutes or less) typically respond to one or two very specific commands.
All of these conversational technologies employ natural-language-recognition capabilities to discern what the user is saying, and other sophisticated intelligence tools to determine what he or she truly needs to know. These technologies are beginning to use machine learning to learn from interactions and improve the resulting recommendations and responses.

Designing for conversational interfaces represents a big shift in the way we are used to thinking about interaction. Chatbots have less signifiers and affordances than websites and apps – which means words have to work harder to deliver clarity, cohesion and utility for the user. It is a change of paradigm that requires designers to re-wire their brain, their deliverables and their design process to create successful bot experiences.
When one dialog invokes another, the Bot Builder adds the new dialog to the top of the dialog stack. The dialog that is on top of the stack is in control of the conversation. Every new message sent by the user will be subject to processing by that dialog until it either closes or redirects to another dialog. When a dialog closes, it's removed from the stack, and the previous dialog in the stack assumes control of the conversation.
“Bots go bust” — so went the first of the five AI startup predictions in 2017 by Bradford Cross, countering some recent excitement around conversational AI (see for example O’Reilly’s “Why 2016 is shaping up to be the Year of the Bot”). The main argument was that social intelligence, rather than artificial intelligence is lacking, rendering bots utilitarian and boring.
Several studies accomplished by analytics agencies such as Juniper or Gartner [34] report significant reduction of cost of customer services, leading to billions of dollars of economy in the next 10 years. Gartner predicts an integration by 2020 of chatbots in at least 85% of all client's applications to customer service. Juniper's study announces an impressive amount of $8 billion retained annually by 2022 due to the use of chatbots.