Dan uses an example of a text to speech bot that a user might operate within a car to turn windscreen wipers on and off, and lights on and off. The users’ natural language query is processed by the conversation service to work out the intent and the entity, and then using the context, replies through the dialog in a way that the user can understand.
More and more companies embrace chatbots to increase engagement with their audiences in the last few years. Especially for some industries including banking, insurance, and retail chatbots started to function as efficient interactive tools to increase customer satisfaction and cost-effectiveness. A study by Humley found out 43% of digital banking users are turning to chatbots – the increasing trend shows that banking customers consider the chatbot as an alternative channel to get instant information and solve their issues.
One pertinent field of AI research is natural language processing. Usually, weak AI fields employ specialized software or programming languages created specifically for the narrow function required. For example, A.L.I.C.E. utilises a markup language called AIML, which is specific to its function as a conversational agent, and has since been adopted by various other developers of, so called, Alicebots. Nevertheless, A.L.I.C.E. is still purely based on pattern matching techniques without any reasoning capabilities, the same technique ELIZA was using back in 1966. This is not strong AI, which would require sapience and logical reasoning abilities.

How can our business leverage technology to better and more often engage younger audiences with our products and services? H&M is one of several retailers experimenting with and leveraging chatbots as a  mobile marketing opportunity – according to a report by Accenture, 32 percent of the world (a large portion of the population 29 years old and younger) uses social media daily and 80 percent of that time is via mobile.

Jabberwacky learns new responses and context based on real-time user interactions, rather than being driven from a static database. Some more recent chatbots also combine real-time learning with evolutionary algorithms that optimise their ability to communicate based on each conversation held. Still, there is currently no general purpose conversational artificial intelligence, and some software developers focus on the practical aspect, information retrieval.
The advancement in technology has opened gates for the innovative and efficient solutions to cater the needs of students by developing applications that can serve as a personalized learning resource. Moreover, these automated applications can potentially help instructors and teachers in saving up a lot of time by offering individual attention to each student.

Along with the continued development of our avatars, we are also investigating machine learning and deep learning techniques, and working on the creation of a short term memory for our bots. This will allow humans interacting with our AI to develop genuine human-like relationships with their bot; any personal information that is exchanged will be remembered by the bot and recalled in the correct context at the appropriate time. The bots will get to know their human companion, and utilise this knowledge to form warmer and more personal interactions.
ELIZA's key method of operation (copied by chatbot designers ever since) involves the recognition of clue words or phrases in the input, and the output of corresponding pre-prepared or pre-programmed responses that can move the conversation forward in an apparently meaningful way (e.g. by responding to any input that contains the word 'MOTHER' with 'TELL ME MORE ABOUT YOUR FAMILY').[9] Thus an illusion of understanding is generated, even though the processing involved has been merely superficial. ELIZA showed that such an illusion is surprisingly easy to generate, because human judges are so ready to give the benefit of the doubt when conversational responses are capable of being interpreted as "intelligent".
×