Next, identify the data sources that will enable the bot to interact intelligently with users. As mentioned earlier, these data sources could contain structured, semi-structured, or unstructured data sets. When you're getting started, a good approach is to make a one-off copy of the data to a central store, such as Cosmos DB or Azure Storage. As you progress, you should create an automated data ingestion pipeline to keep this data current. Options for an automated ingestion pipeline include Data Factory, Functions, and Logic Apps. Depending on the data stores and the schemas, you might use a combination of these approaches.

Conversational bots “live” online and give customers a familiar experience, similar to engaging an employee or a live agent, and they can offer that experience in higher volumes. Conversational bots offer scaling—or the capability to perform equally well under an expanding workload—in ways that human can’t, assisting businesses to reach customers in a way they couldn’t before. For one, businesses have created 24/7/365 online presence through conversational bots.

Feine, J., Morana, S., and Maedche, A. (2019). “Leveraging Machine-Executable Descriptive Knowledge in Design Science Research ‐ The Case of Designing Socially-Adaptive Chatbots”. In: Extending the Boundaries of Design Science Theory and Practice. Ed. by B. Tulu, S. Djamasbi, G. Leroy. Cham: Springer International Publishing, pp. 76–91. Download Publication

As IBM elaborates: “The front-end app you develop will interact with an AI application. That AI application — usually a hosted service — is the component that interprets user data, directs the flow of the conversation and gathers the information needed for responses. You can then implement the business logic and any other components needed to enable conversations and deliver results.”
Back to our earlier example, if a bot doesn’t know the word trousers and a user corrects the input to pants, the bot will remember the connection between those two words in the future. The more words and connections that a bot is exposed to, the smarter it gets. This process is similar to that of human learning. Our capacity for memory and synthesis is part of what makes us unique, and we’re teaching our best tricks to bots.
As artificial intelligence continues to evolve (it’s predicted that AI could double economic growth rates by 2035), conversational bots are becoming a powerful tool for businesses worldwide. By 2020, it’s predicted that 85% of customers’ relationship with businesses will be handled without engaging a human at all. Businesses are even abandoning their mobile apps to adopt conversational bots.
There is a general worry that the bot can’t understand the intent of the customer. The bots are first trained with the actual data. Most companies that already have a chatbot must be having logs of conversations. Developers use that logs to analyze what customers are trying to ask and what does that mean. With a combination of Machine Learning models and tools built, developers match questions that customer asks and answers with the best suitable answer. For example: If a customer is asking “Where is my payment receipt?” and “I have not received a payment receipt”, mean the same thing. Developers strength is in training the models so that the chatbot is able to connect both of those questions to correct intent and as an output produces the correct answer. If there is no extensive data available, different APIs data can be used to train the chatbot.
Utility bots solve a user's problem, whatever that may be, via a user-prompted transaction. The most obvious example is a shopping bot, such as one that helps you order flowers or buy a new jacket. According to a recent HubSpot Research study, 47% of shoppers are open to buying items from a bot. But utility bots are not limited to making purchases. A utility bot could automatically book meetings by scanning your emails or notify you of the payment subscriptions you forgot you were signed up for.
As ChatbotLifeexplained, developing bots is not the same as building apps. While apps specialise in a number of functions, chatbots have a bigger capacity for inputs. The trick here is to start with a simple objective and focus on doing it really well (i.e., having a minimum viable product or ‘MVP’). From that point onward, businesses can upgrade their bots.
Smart chatbots rely on artificial intelligence when they communicate with users. Instead of pre-prepared answers, the robot responds with adequate suggestions on the topic. In addition, all the words said by the customers are recorded for later processing. However, the Forrester report “The State of Chatbots” points out that artificial intelligence is not a magic and is not yet ready to produce marvelous experiences for users on its own. On the contrary, it requires a huge work:
Shane Mac, CEO of San Francisco-based Assist,warned from challenges businesses face when trying to implement chatbots into their support teams: “Beware though, bots have the illusion of simplicity on the front end but there are many hurdles to overcome to create a great experience. So much work to be done. Analytics, flow optimization, keeping up with ever changing platforms that have no standard.

Aside from being practical and time-convenient, chatbots guarantee a huge reduction in support costs. According to IBM, the influence of chatbots on CRM is staggering.  They provide a 99 percent improvement rate in response times, therefore, cutting resolution from 38 hours to five minutes. Also, they caused a massive drop in cost per query from $15-$200 (human agents) to $1 (virtual agents). Finally, virtual agents can take up an average of 30,000+ consumers per month.
The upcoming TODA agents are good at one thing, and one thing only. As Facebook found out with the ambitious Project M, building general personal assistants that can help users in multiple tasks (cross-domain agents) is hard. Think awfully hard. Beyond the obvious increase in scope, knowledge, and vocabulary, there is no built-in data generator that feeds the hungry learning machine (sans an unlikely concerted effort to aggregate the data silos from multiple businesses). The jury is out whether the army of human agents that Project M employs can scale, even with Facebook’s kind of resources. In addition, cross-domain agents will probably need major advances in areas such as domain adaptation, transfer learning, dialog planning and management, reinforcement/apprenticeship learning, automatic dialog evaluation, etc.
Simple chatbots work based on pre-written keywords that they understand. Each of these commands must be written by the developer separately using regular expressions or other forms of string analysis. If the user has asked a question without using a single keyword, the robot can not understand it and, as a rule, responds with messages like “sorry, I did not understand”.
1. AI-based: these ones really rely on training and are fairly complicated to set up. You train the chatbot to understand specific topics and tell your users which topics your chatbot can engage with. AI chatbots require all sorts of fall back and intent training. For example, let’s say you built a doctor chatbot (off the top of my head because I am working on one at the moment), it would have to understand that “i have a headache” and “got a headache” and “my head hurts” are the same intent. The user is free to engage and the chatbot has to pick things up.

[In] artificial intelligence ... machines are made to behave in wondrous ways, often sufficient to dazzle even the most experienced observer. But once a particular program is unmasked, once its inner workings are explained ... its magic crumbles away; it stands revealed as a mere collection of procedures ... The observer says to himself "I could have written that". With that thought he moves the program in question from the shelf marked "intelligent", to that reserved for curios ... The object of this paper is to cause just such a re-evaluation of the program about to be "explained". Few programs ever needed it more.[8]