As I tinker with dialog systems at the Allen Institute for Artificial Intelligence, primarily by prototyping Alexa skills, I often wonder what AI is still lacking to build good conversational systems, punting the social challenge to another day. This post is my take on where AI has a good chance to improve and consequently, what we can expect from the next wave of conversational systems.
Clare.AI is a frontend assistant that provides modern online banking services. This virtual assistant combines machine learning algorithms with natural language processing. The Clare.AI algorithm is trained to respond to customer service FAQs, arrange appointments, conduct internal inquiries for IT and HR, and help customers control their finances via their favorite messaging apps (WhatsApp, Facebook, WeChat, etc.). It can even draw a chart showing customers how they’ve spent their money.
Beyond users, bots must also please the messaging apps themselves. Take Facebook Messenger. Executives have confirmed that advertisements within Discover — their hub for finding new bots to engage with — will be the main way Messenger monetizes its 1.3 billion monthly active users. If standing out among the 100,000 other bots on the platform wasn't difficult enough, we can assume Messenger will only feature bots that don't detract people from the platform.
Just last month, Google launched its latest Google Assistant. To help readers get a better glimpse of the redesign, Google’s Scott Huffman explained: “Since the Assistant can do so many things, we’re introducing a new way to talk about them. We’re them Actions. Actions include features built by Google—like directions on Google Maps—and those that come from developers, publishers, and other third parties, like working out with Fitbit Coach.”
Ultimately, only time will tell how effective the likes of Facebook Messenger will become in the long term. As more and more companies look to use chatbots within the platform, the greater the frequency of messages that individual users will receive. This could result in Facebook (and other messaging platforms) placing stricter restrictions on usage, but until then I'd recommend testing as much as possible.

All of these conversational technologies employ natural-language-recognition capabilities to discern what the user is saying, and other sophisticated intelligence tools to determine what he or she truly needs to know. These technologies are beginning to use machine learning to learn from interactions and improve the resulting recommendations and responses.

In the early 90’s, the Turing test, which allows determining the possibility of thinking by computers, was developed. It consists in the following. A person talks to both the person and the computer. The goal is to find out who his interlocutor is — a person or a machine. This test is carried out in our days and many conversational programs have coped with it successfully.
Note that you can add more than one button under this card, so if the most common customer requests are your hours, location, phone number, or directions, create additional blocks with that information to return to the user. If you’re an online service-based business, you may want to include blocks in your buttons that give more information on a particular segment of your business.
For example, say you want to purchase a pair of shoes online from Nordstrom. You would have to browse their site and look around until you find the pair you wanted. Then you would add the pair to your cart to go through the motions of checking out. But in the case Nordstrom had a conversational bot, you would simply tell the bot what you’re looking for and get an instant answer. You would be able to search within an interface that actually learns what you like, even when you can’t coherently articulate it. And in the not-so-distant future, we’ll even have similar experiences when we visit the retail stores.
In 1950, Alan Turing's famous article "Computing Machinery and Intelligence" was published,[7] which proposed what is now called the Turing test as a criterion of intelligence. This criterion depends on the ability of a computer program to impersonate a human in a real-time written conversation with a human judge, sufficiently well that the judge is unable to distinguish reliably—on the basis of the conversational content alone—between the program and a real human. The notoriety of Turing's proposed test stimulated great interest in Joseph Weizenbaum's program ELIZA, published in 1966, which seemed to be able to fool users into believing that they were conversing with a real human. However Weizenbaum himself did not claim that ELIZA was genuinely intelligent, and the introduction to his paper presented it more as a debunking exercise:
×