Some brands already seem to be getting the balance right. A bot needs to capture a user's attention quickly and display a healthy curiosity about their new acquaintance, but too much curiosity can easily push them into creepy territory and turn people off. They have to display more than a basic knowledge of human conversational patterns, but they can't claim to be an actual human -- again, let's keep things from getting too creepy here.
ELIZA's key method of operation (copied by chatbot designers ever since) involves the recognition of cue words or phrases in the input, and the output of corresponding pre-prepared or pre-programmed responses that can move the conversation forward in an apparently meaningful way (e.g. by responding to any input that contains the word 'MOTHER' with 'TELL ME MORE ABOUT YOUR FAMILY'). Thus an illusion of understanding is generated, even though the processing involved has been merely superficial. ELIZA showed that such an illusion is surprisingly easy to generate, because human judges are so ready to give the benefit of the doubt when conversational responses are capable of being interpreted as "intelligent".
Chatbots give businesses a way to deliver this information in a comfortable, conversational manner. Customers can have all their questions answered without the pressure or obligation that make some individuals wary of interacting with a live salesperson. Once they’ve obtained enough information to make a decision, a chatbot can introduce a human representative to take the sale the rest of the way.

The process of building a chatbot can be divided into two main tasks: understanding the user's intent and producing the correct answer. The first task involves understanding the user input. In order to properly understand a user input in a free text form, a Natural Language Processing Engine can be used.[36] The second task may involve different approaches depending on the type of the response that the chatbot will generate.


As in the prior method, each class is given with some number of example sentences. Once again each sentence is broken down by word (stemmed) and each word becomes an input for the neural network. The synaptic weights are then calculated by iterating through the training data thousands of times, each time adjusting the weights slightly to greater accuracy. By recalculating back across multiple layers (“back-propagation”) the weights of all synapses are calibrated while the results are compared to the training data output. These weights are like a ‘strength’ measure, in a neuron the synaptic weight is what causes something to be more memorable than not. You remember a thing more because you’ve seen it more times: each time the ‘weight’ increases slightly.
AI, blockchain, chatbot, digital identity, etc. — there’s enough emerging technology in financial services to fill a whole alphabet book. And it’s difficult not to get swept off your feet by visions of bionic men, self-executing smart contracts, and virtual assistants that anticipate our every need. Investing in emerging technology is one of the main […]
ELIZA's key method of operation (copied by chatbot designers ever since) involves the recognition of clue words or phrases in the input, and the output of corresponding pre-prepared or pre-programmed responses that can move the conversation forward in an apparently meaningful way (e.g. by responding to any input that contains the word 'MOTHER' with 'TELL ME MORE ABOUT YOUR FAMILY').[9] Thus an illusion of understanding is generated, even though the processing involved has been merely superficial. ELIZA showed that such an illusion is surprisingly easy to generate, because human judges are so ready to give the benefit of the doubt when conversational responses are capable of being interpreted as "intelligent".
×